FIRST LIVE BIRTH USING HUMAN OOCYTES RECONSTITUTED BY SPINDLE NUCLEAR TRANSFER FOR MITOCHONDRIAL DNA MUTATION CAUSING LEIGH SYNDROME. J. Zhang,1 H. Liu,1 S. Liu,2 A. Chavez-Badieira,1 Z. Liu,1 in yang,1 S. Munne,1 M. Konstantinidis,1 D. Welty,1 T. Huang,5 New Hope Fertility Center, New York, NY, 2Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 3New Hope Fertility Center, Guatemala, Mexico, 4Reprogenetics, Livingston, NJ, 5Reprogenetics, Oxford, United Kingdom, 6Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH

OBJECTIVE: Mutations in mitochondrial (mt) DNA are maternally inherited and can cause fatal or debilitating disorders without effective treatments.1,2 The severity of clinical symptoms is often associated with the mtDNA mutation load in heteroplasmy.3 Experimental nuclear transfer in metaphase II (MII) spindle oocytes or in pronuclear (PN) zygotes, also called micromanipulation replacement therapy, has been shown to be a novel technology in minimizing mutated mtDNA transmission from oocytes to pre-implantation embryos.4,5 Here we report the first live birth of a boy following spindle nuclear transfer (SNT).

DESIGN: Translational research.

MATERIALS AND METHODS: The patient is a 36-year-old woman with 24.5% mtDNA displaying 8993T>G mutation in subunit 6 of the ATPase gene known to cause Leigh syndrome.6 She had 4 pregnancy losses and 2 deceased children at age 8 months and 6 years from Leigh syndrome as confirmed by >95% mutation load. She was seeking conception of a healthy baby and elected to have SNT over PN transfer for religious reasons. Under IRB-approved protocol with proper consent, the patient’s spindle nuclei were isolated and transferred into the perivitelline space of enucleated donor oocytes. The micro-manipulated complexes were then subjected to 1.4 kV/cm DC voltage for cell membrane fusion. The reconstituted oocytes were fertilized by intracytoplasmic sperm injection (ICSI). The developed blastocysts were biopsied for preimplantation genetic screening (PGS) by array comparative genomic hybridization and whole-quantitative genomic mtDNA analysis by Next Generation Sequencing.

RESULTS: Five MII oocytes with birth-different spindles were subjected to mitotic SNT. The 5 oocytes were successfully reconstituted and fertilized normally by ICSI. Four out of 5 fertilized oocytes developed into blastocysts. PGS showed that one blastocyst was euploid (46,XY), while 3 embryos were aneuploid. The average transmission rate of maternal mtDNA in the biopsied euploid blastocyst was 5.10 ± 1.11% and the heteroplasmy level for 8993T>G was 5.73%. Transfer of the euploid embryo resulted in an uneventful pregnancy with delivery of a healthy boy at 37 weeks of gestation. The average level of transmitted mother’s mtDNA in several neonatal tissues including buccal epithelium, hair follicles, circumcised foreskin, urine precipitate, placenta, amnion, umbilical blood, and umbilical cord was less than 1.60 ± 0.92%. The baby is currently 3 months old and doing well.

CONCLUSIONS: Human oocytes reconstituted by SNT are capable of producing a healthy live birth. SNT may provide a novel treatment option in minimizing pathogenic mtDNA transmission from mothers to their babies.